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ABSTRACT

The conversion matrix of an arbitrary nonlinear
multiport, operated in steady-state periodic regime,
is defined and computed by a general straightforward
approach. The results can be used to analyze the
steady state for stability and generation of spuri
ous, and to give a systematic solution to the gener
alized mixer problem. Some typical examples of ap
plication are presented and discussed.

INTRODUCTION

Modern computer-aided mixer analysis techniques
rely upon the concept of admittance (or impedance)
conversion matrix of a nonlinear device {1, 2}. Al
though several approaches to the computation of the
conversion matrix of specific device topologies have
been proposed in the technical literature {1 -5}, a
completely general method has not been available so
far. This paper introduces an algorithm allowing a
straightforward derivation of the conversion matrix
of any nonlinear multiport for which an analytic
time~-domain or an eguivalent-circuit description is
available, irrespective of its topology. Some
examples of application are presented.

The result of this work is of considerable import
ance: besides providing a key tool for the solution
of the generalized mixer problem, it lends itself to
impressive conceptual developments, such as general
stability and noise analysis of pumped or self-oscil
lating nonlinear circuits.

GENERALIZED CONVERSION MATRIX

We consider a nonlinear device described by the
set of time-domain equations
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where v, i are vectors of voltages and currents at

the device ports, and x is a vector of physical quan
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tities used as state variables. For a well-behaved
device all vectors in (1) have the same size np,
equal to the number of device ports. With a suit
able choice of both the device ports and the state
variablesg, (1) can fit any device model, no matter
how complicated.

Now we assume that the nonlinear device 1s con
nected with an np-port linear network and that the
resulting circuit can support a periodic steady-
state regime (either pumped or self-oscillating)
with a fundamental frequency ws,. Voltage and cur
rent harmonics of the steady state can be found by
the harmonic-balance technique. If the equilibrium
condition is perturbed by injecting a small signal
exp(jwt) , the resulting perturbation of the device
state takes the form

A_x(t)=Re[ og AX

ot A% exp{j(w +kwo)t}] (2)

where AX 1s a vector (of size np) of complex
spectral components in the k-th sideband. Similar
expressions hold for the perturbations of voltages
and currents at the device ports (with AX replaced
by AV , ézk' respectively). The perturbed electri
cal regime must satisfy the device equations (1).
Since the perturbation is small, these equations
may be linearized around the periodic steady state,
which results in a linear relationship among the
sideband amplitudes AXy, Avy, éEk' For ease of nota
tion, we now introduce the vectors of all sideband
amplitudes, namely AX, AV, AI (i.e., AX is the col
umn of all subvectors AXy for -« <k <®). Thus we
will have

by=p px
3
b1 =0 AX ¥
from which
AL=0 P7h AV-Y AV
1 (4)
AV=P Q" AT=2 AI .
Lv=P ot A1=2 AT

By definition ¥ (2 ) is the admittance (impedance)
Lo = )
conversion matrix of the nonlinear device.

The matrices P, Q can be computed by the follow
ing algorithm. First we derive from (1), and we
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evaluate in steady-state conditions (V) , the
(np xnp) Jacobian matrices

3% ©

— = ¥ cC exp(jpw t)

3y p=-® ~m,p °

“m |

(5)

3y -
— = ¥ D exp (jpw t)

dy p=-° —m,p °

AP

where y, = %, yp = d%%/at™ (m=1, 2..n). Since the
steady state is periodic, so are the Jacobian ma
trices, which justifies the Fourier expansions on
the right-hand side of (5). The coefficient matrices
can actually be computed by the FFT. As a second
step we introduce the (npxnp) matrices

n m
P = I {jw+kew )} C
—Xk,p m=0 o) -m,p (6)
n m
= X j (w + ki D
2k,p m=0 it wo)} m,p

from which we finally get

[Ek,s—k] e [gk,s—k] : e

In (7), s acts as the row index, and k as the col

E

il

umn index of the generic (npxnp) submatrix
(-®<g< ©, —w<k<®), It has been verified that
the usual conversion matrix of some elementary com
ponents, such as the nonlinear conductance and ca
pacitance, can be reobtained from the above equa
tions in a straightforward way.

STABILITY

As a first application we show that the general
ized conversion matrix can be used to investigate
the stability of the steady-state equilibrium condi
tion in a simple, physically intuitive way. To do
so, we consider a small injected signal of the form
expl (0 + jw)t} and look for the values of (¢ + jw)
that represent the natural frequencies of the
steady~-state periodic regime. Since the perturbation
is small, the nonlinear device equations still have
the form (4), with w replaced by w- jo in the ex
pression of the conversion matrix. On the other
hand, if the (npxnp) admittance matrix of the lin
ear subnetwork is denoted by Y(w), the constraints
imposed by the linear subnetwork on the sideband
amplitudes may be written as

AT = - Y AV 8
T, (8)

where

—ok <o (9)

Y =diag [Y(w-+kw —jo)]
—L - (¢}

Combining (9) and (4) yields the eigenvalue equation
for the natural frequencies
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det(¥ +Y ) =0 . (10)
—c —L

Note that (10) is formally identical, and concep
tually similar, to the equation used to find the
natural frequencies of a linear network. The corre
sponding quantities for the two cases are: the ad
mittance conversion matrix (nonlinear case), and
the conventional device admittance matrix (linear
case); the diagonal sum (9) of the linear subnet
work admittances at all sidebands (nonlinear case),
and the conventional linear subnetwork admittance
matrix (linear case). For computational purposes,
(10) by means of (3) 1s rewritten in the equivalent
form

det A=0 (11)
where
=|Aa
a [—k,s-k] (12)
n m
= j{w+k D +
ék,s-k méo fo *ile u)o)} —m,s-k (13)

+Y(w+sw - 30) o {o+jw+ke )1 cC
- o) m=0 o ~m,s-k
(- <s<®, —o<k<®), The properties of the infi
nite matrix (12) are discussed in detail in ref.
{6}, together with an algorithm for the numerical
derivation of its Nyquist stability plot. This
makes available a general tool for analyzing such
effects as the generation of spurious tones in
microwave oscillators, the existence of parametric
instabilities in pumped-reactance circuits, and
similar.

DIODE WITH NONLINEAR SERIES RESISTANCE

The equivalent circuit of a microwave diode is
given in fig. 1. The (only) state variable used to
describe the device is the voltage across the junc
tion, indicated by x in the figure, according to -
(1) . The diode model includes a nonlinear series
resistance Rg(x) depending on the junction voltage.
In most previous approaches to mixer analysis, this
nonlinear resistance has been replaced by a linear
(constant) one, because its presence would consider
ably complicate the computation of the conversion
matrix by conventional methods. On the other hand,
the present theory can cope with the model of fig.
1 in a straightforward way.

Following the method outlined in section 2, we
introduce the Fourier expansions

dr di
[*Si (%) +R (x) —D]
dx D s dx

[

= I exp (j t
N pte % p(Jpwo) (14a)

R {X(£)} « cl¥ z
< x(t)} »c{x(e)} :pgim Tp exp(;pwot) (14b)
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Fig. 1 - Nonlinear equivalent circuit of microwave diode.

diD -
—_— = ¥ G exp(ijpw t) (14¢)
ax | pe % p(3pw
N 3
c{x(t)}= I C exp(jpw t) (144)
p=-® p o

N
where x(t) is the steady-state voltage across the
diode junction. Next we define the matrices

- [as-k ]

The admittance conversion matrix of the diode is
then given by

Y =(C+3QC)s(E+ta+i o 1)L (16)
~c = 2 =272 PNy

where E denotes the identity matrix.

NONCONVENTIONAL FET MODELS

a
Fig. 2 shows a nonlinear equivalent circuit of
T = [T x ] the Plessey GAT6é FET {7}. The intrinsic channel re
KN o= =
sistance is modeled as a nonlinear parametric resis
G = [G k.] (15) tor R, depending on gate voltage. Furthermore the
s circuit contains an internal feedback branch Rf - Cf
C = [C k ] used to decouple the DC and AC behavior. Once again,
= o
this model would be very difficult to deal with by
= diag [w-ksm ] . conventional methods. Note that a similar situation
- [}
occurs when the equivalent circuit of the Gunn do
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Fig. 2 - Nonlinear equivalent circuit of the Plessey GAT6 FET (after {71).
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main is included in the FET model. {7} M.I. sobhy et al., "The design of microwave
monolithic voltage controlled oscillators”,
Proc. 15th European Microwave Conference,
Paris, Sept. 1985, pp. 925-930.

To apply the approach described in this paper,
we cut the circuit at point A and include the feed
back branch (which has constant parameters) in the
linear part of the network. We are thus left with a
three-port nonlinear device (port nodes are G-S,
D-S, A-S, respectively), for which we select as
state variables the gate and drain voltages and
the current through the channel resistance (namely
i in fig. 2). This choice is essential in order to
avoid numerical ill-conditioning because the resis
tance R; takes very small values for certain gate
voltages {7}. At this stage both the device equa
tion (1) and the Jacobian matrices (5) can be writ
ten by inspection of fig. 2 in terms of vg, vp, i.
The details of the derivation are not reported here
for the sake of brevity.
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