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ABSTRACT

The conversion matrix of an arbitrary nonlinear

multiport, operated in steady-state periodic regime,

is defined and computed by a general straightforward

approach. The results can be used to analyze the

steady state for stability and generation of spuri —
OUS, and to give a systematic solution to the gener —
alized mixer problem. Some typical examples of ap—
plication are presented and discussed.

INTRODUCTION

Modern computer–aided mixer analysis techniques

rely upon the concept of admittance (or impedance)

conversion matrix of a nonlinear device {1, 2}. Al—
though several approaches to the computation of the

conversion matrix of specific device topologies have

been proposed in the technical literature {1-5}, a

completely general method has not been available so

far. This paper introduces an algorithm allowing a

straightforward derivation of the conversion matrix

of any nonlinear multiport for which an analytic

time-domain or an equivalent-circuit description is

available, irrespective of its topology. Some

examples of application are presented.

The result of this work is of considerable import —
ante: besides providing a key tool for the solution

of the generalized mixer problem, it lends itself to

impressive conceptual developments, such as general

stability and noise analysis of pumped or self-oscil —
lating nonlinear circuits.

GENERALIZED CONVERSION MATRIX

We consider a nonlinear device described by the

set of time–domain equations

[

dx dnx
~(t) ‘Q _x(t), -=,...=

dtn 1
(1)

[

dx dnx
i(t)=$ x(t), ~,. ..~
—— —

dt 1
where v, i are vectors of voltages and currents at——
the device ports, and x is a vector of physical quan— —

tities used as state variables. For a well–behaved

device all vectors in (1) have the same size nD,

equal to the number of device ports. With a suit —
able choice of both the device ports and the state

variables, (1) can fit any device model, no matter

how complicated.

Now we assume that the nonlinear device IS con—
netted with an nD-port linear network and that the

resulting circuit can support a perioclic steady–

state regime (either pumped or self-oscillating)

with a fundamental frequency Uo. VOlta9e and cu~

rent harmonics of the steady state can be found by

the harmonic-balance technique. If the equilibrium

condition is perturbed by injecting a sma~~ signal

exp(jut) , the resulting perturbation c)f the device

state takes the form

Ax(t) =Re
[

; AX exp{j(w+km )t]— k=-. A 1 (2)
0

where AX IS a vector (of size nD) of complex

spectral components in the k-th sideband. Similar

expressions hold for the perturbations of voltages

and currents at the device ports (with AX replaced

by ~kr AI ,
‘k

respectively) . The pertuKbed electri

cal regi~kmust satisfy the device equations (l):

Since the perturbation is small, these equations

may be linearized around the per~odic steady state,

which results in a linear relationship among the

sideband amplitudes &, 5, ~. For ease Of nOtfi

tionf we now introduce the vectors of all sideband

amplitudes, namely &, ~, AI (i.e., .A~ is the co:—
umn of all subvectors ~ for - ~<k i CO). Thus we

will have

AV=P AX—— —

AI=QAx— ——

from which

AI=QP-l AV=Y Av——— —— —

(3)

G

AV=PQ-l AI=Z LI .—— —— —c —

By definition Y (Z )—c —c
conversion matrix of

The matrices ~, ~

ing algorithm. First

(4)

is the admittance (impedance)

the nonlinear device.

can be computed by the follow —
we derive from (1) , and we
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evaluate

(nDxnD)

a~ .

ay
T m

av—
— .
ay
-m ~

where ~.

in steady-state conditions (~) , the

Jacobian matrices

;C exp ( jpwot)
~=.. ~,p

(5)

: exp(jpw t)
p=-. ~,p o

= 3, & “ dmx/dtm (m = 1, 2 . .n) . Since the—
steady state is periodic, so are the Jacobian ma—
trices, which justifies the Fourier expansions on

the right-hand side of (5). The coefficient matrices

can actually be computed by the FFT. As a second

step we introduce the (nDxnD) matrices

‘m;o{g(m+kwo)}mc
‘ktp ~,P

= ~ {j(u+ku )}mD
~k,p m=O 0 -mrP

from which we finally get

“[2k,s-k] ~’[%s-k]
—

(6)

(7)

In (7), s acts as the row index, and k as the CO1—
umn index of the generic (nDxnD) aibmatrix

(-rn<s<m, -~<k<~). It has been verified that

the usual conversion matrix of some elementary com—
ponentsr such as the nonl~near conductance and ca—
pacitance, can be reobtained from the above equa—
tions in a straightforward way.

STABILITY

As a first application we show that the general —
ized conversion matrix can be used to investigate

the stability of the steady-state equilibrium condi .
tion in a simple, physically intuitive way. To do

so, we consider a small injected signal of the form

exp{(u+jo)t} and look for the values of (a +ju)

that represent the natural frequencies of the

steady-state periodic regime. Since the perturbation

is small, the nonlinear device equations still have

the form (4) , with o! replaced by u- ju in the ex—
pression of the conversion matrix. On the other

hand, if the (nDxnD) admittance matrix of the lin

ear subnetwork is denoted by Y(m) , the constraint;—
imposed by the linear subnetwork on the sideband

amplitudes may be written as

AI=-YAv— ‘L —
(8)

where

[
~L=diag ~(u+kwo-jo) 1 -m<k <m . (9)

Combining (9) and (4) yields the eigenvalue equation

for the natural frequencies

det(Y +Y ) =0 .
‘c ‘L

(lo)

Note that (10) is formally identical, and concep

tually similar,
—

to the equation used to find the

natural frequencies of a linear network. The corre —
spending quantities for the two cases are: the ad—
mittance conversion matrix (nonlinear case) , and

the conventional device admittance matrix (linear

case) ; the diagonal sum (9) of the linear subnet —
work admittances at all sidebands (nonlinear case) ,

and the conventional linear subnetwork admittance

matrix (linear case) . For computational purposes,

(10) by means of (3) IS rewritten in the equivalent

form

detA=O— (11)

where

= ! {O+j(u+kwo)}m D
%,s-k m=O

+
w,s-k

(12)

(13)

+Y(kl+m! -,CT) m~o{u+j(m+kw )}m~,~_k— 0 0

(-m<S<w, -~<k<~). The properties of the infi —
nlte matrix (12) are discussed in detail in ref.

{6}, together with an algorithm for the numerical

derivation of its Nyquist stability plot. This

makes available a general tool for analyzing such

effects as the generation of spurious tones in

microwave oscillators, the existence of parametric

instabilities in pumped-reactance circuits, and

similar.

DIODE WITH NONLINEAR SERIES RESISTANCE

The equivalent circuit of a microwave diode is

given in fig. 1. The (only) state variable used to

describe the device is the voltage across the junc

tion,
—

ind~cated by x in the figure, according to

(l). The diode model includes a nonlinear series

resistance R~(x) depending on the junction voltage.

In most previous approaches to mixer analysis, this

nonlinear resistance has been replaced by a linear

(constant) one, because its presence would consider —
ably complicate the computation of the conversion

matrix by conventional methods. On the other hand,

the present theory can cope with the model of fig.

1 in a straightforward way.

Following the method outlined in section 2, we

Introduce the Fourier expansions

[

dR

II
di-~ iD(x)+R (x) ~ =;

s exp(jpuot) (14a)n, ~=_a ~p

Rs{~(t)} .C{$(t)}= ~ exp(jpuot)
p=_cO Tp (14b)
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Fig. 1 - Nonlinear equivalent circuit of microwave diode.

di
D m

~ G exp(jpwot)
& = p=-’@ p‘1

c{;(t)}= Y C exp(jpuot)p=_m p

where ~(t) is the steady-state

diode junction. Next we define

[1CX:CY.— s-k

[1T:T— s–k

[1GE(2— s-k

[1~%c
s-k

a = ‘is+’+suol—

G

1

: c (x)

The admittance conversion matrix of the diode is

voltage across 1

14C) then given by

Y =(G+ji2C)
14d)

. (E+~+j ~ T)-l (16)
—c — —— — ——

where E denotes the identity matrix.
the —

the matrices

(15)

NONCONVENTIONAL FET MODELS

Fig. 2 shows a nonlinear equivalent: circuit of

the Plessey GAT6 FET {7]. The intrinsic channel re—
sistance is modeled as a nonllnear parametric resis —
tor Rl depending on gate voltage. Furthermore the

circuit contains an internal feedback branch Rf -Cf

used to decouple the EC and AC behavic>r. Once again,

this model would be very difficult to deal with by

conventional methods. Note that a simj.lar situation

occurs when the equivalent circuit of the Gunn do—

‘GD
Al

o
s

Ri

i

1

CDS

Fig. 2 - Nonlinear equ~valent circuit of the Plessey GAT6 FET (after {7}).
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main is included in the FET model. {7} M-I. Sobhyet al., “The design of microwave

To apply the approach described in this paper,
monolithic voltage controlled oscillators”,

Proe. 15th European Microwaoe Conference,
we cut the circuit at point A and include the fee~

back branch (which has constant parameters) in the
Paris, Sept. 1985, pp. 925-930.

linear part of the network. We are thus left with a

three-port nonlinear device (port nodes are G-S,

D–S, A-S, respectively) , for which we select as

state varitiles the gate and drain voltages and

the current through the channel resistance (namely

i in fig. 2). This choice is essential in order to

avoid numerical ill-conditioning because the resis —
tance Ri takes very small values for certain gate

voltages {7]. At this stage both the device equa—
tion (1) and the Jacobian matrices (5) can be writ —
ten by inspection of fig. 2 in terms of VG, VD, i.

The details of the derivation are not reported here

for the sake of brevity.
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